Abstract

The relation between toroidal rotation velocities (Vt) in the core and edge regions is investigated in H-mode plasmas with a small external torque input from the viewpoint of momentum transport. The toroidal rotation velocity in the core region (core-Vt) gradually varies on a timescale of ∼20 ms after a rapid change in the toroidal rotation velocity in the edge region (edge-Vt) at the L–H transition. This timescale of ∼20 ms is consistent with a transport timescale using the momentum diffusivity (χϕ) and convection velocity (Vconv). In steady state, a linear correlation between the core- and edge-Vt is observed in H-mode plasmas when the ion pressure gradient (∇Pi) is small. This relation between core- and edge-Vt is also explained by momentum transport. The Vt profiles with a large ∇Pi are reproduced in the core region of r/a ∼ 0.2–0.7 by adopting a residual stress term ‘Πres = αkχϕ∇Pi’ proposed in this paper. Here r/a is the normalized plasma radius and αk1 is a radial constant. Using this formula, Vt profiles are reproduced over a wide range of plasma conditions. Parameter dependences of the edge-Vt are investigated at a constant ripple loss power, ripple amplitude and plasma current. A reduction in the CTR-rotation is observed with decreasing ion temperature gradient (∇Ti). Here CTR refers to the counter-IP direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.