Abstract

Forces involved in modern conflicts may be exposed to a variety of threats, including coordinated raids of advanced ballistic and cruise missiles. To respond to these, a defending force will rely on a set of combat resources. Determining an efficient allocation and coordinated use of these resources, particularly in the case of multiple simultaneous attacks, is a very complex decision-making process in which a huge amount of data must be dealt with under uncertainty and time pressure. This article presents CORALS (COmbat Resource ALlocation Support), a real-time planner developed to support the command team of a naval force defending against multiple simultaneous threats. In response to such multiple threats, CORALS uses a local planner to generate a set of local plans, one for each threat considered apart, and then combines and coordinates them into a single optimized, conflict-free global plan. The coordination is performed through an iterative process of plan merging and conflict detection and resolution, which acts as a plan repair mechanism. Such an incremental plan repair approach also allows adapting previously generated plans to account for dynamic changes in the tactical situation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.