Abstract

We examine the classic game of Cops and Robbers played on models of dynamic graphs, that is, graphs evolving over discrete time steps. At each time step, a graph instance is generated as a subgraph of the underlying graph of the model. The cops and the robber take their turns on the current graph instance. The cops win if they can capture the robber at some point in time. Otherwise, the robber wins. In the offline case, the players are fully aware of the evolution sequence, up to some finite time horizon T. We provide a O(n 2k+1 T) algorithm to decide whether a given evolution sequence for an underlying graph with n vertices is k-cop-win via a reduction to a reachability game. In the online case, there is no knowledge of the evolution sequence, and the game might go on forever. Also, each generated instance is required to be connected. We provide a nearly tight characterization for sparse underlying graphs, i.e., with at most linear number of edges. We prove λ + 1 cops suffice to capture the robber in any underlying graph with n − 1 + λ edges. Further, we define a family of underlying graphs with n−1+λ edges where λ−1 cops are necessary (and sufficient) for capture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.