Abstract

AbstractCa14Al10Zn6O35:Mn4+ (CAZ:Mn) phosphor material, which shows deep‐red luminescence, was synthesized by the coprecipitation (COP) method using a Na2CO3/NaOH solution as the precipitant. COP–CAZ:Mn phosphor exhibited a 2.1 times higher luminescence intensity than the corresponding phosphor prepared using the conventional solid‐state reaction (SSR) method. This substantial increase in luminescence was mainly ascribed to the existence of a greater proportion of tetravalent manganese in COP–CAZ:Mn phosphor. Furthermore, COP–CAZ:Mn phosphor was modified with SiO2 via hydrolysis of tetraethoxysilane (TEOS) to waterproof the compound because it is easily decomposed through hydrolysis under humid conditions. The SiO2‐modified CAZ:Mn phosphor maintained its crystal structure and high photoluminescence intensity after the water‐resistance test. Therefore, waterproof CAZ:Mn phosphor with a high luminescence intensity was successfully discovered by utilizing the coprecipitation method and SiO2 modification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call