Abstract

ABSTRACT Cerium dioxide (CeO2), especially doped cerium, is widely used as an electrolyte, while stannic oxide (SnO2) is known as a gas sensor material, but it is exceptionally new in solid-state ionics. In this work, a new semiconductor composite that consists of CeO2 and SnO2 was synthesized using a co-precipitation method and investigated for applications in solid oxide fuel cells (SOFCs). The as-prepared CeO2-SnO2 composite (n-n type) is employed as an electrolyte sandwiched between two Ni0.8Co0.15Al0.05LiO2-δ (NCAL) electrodes to fabricate fuel cells with a high power density of 1167 mW cm−2, accompanied by high open-circuit voltage (OCV) of 1.11 V at 550°C XRD, SEM, and HR-TEM analyses are employed to investigate the microstructure of the composites, illustrating that the as-prepared composite has particles of the nanometer size, without any other impurity phases. The electrical properties of the device are studied by EIS measurements. The results indicate that the synthesized CeO2-SnO2 composite exhibits higher ionic conductivity than that of the CeO2-SnO2 composite prepared by a dry grinding method. Considerable proton conductivity was also found for the CeO2-SnO2 composite. Interestingly, although two n-type semiconductor materials are composited for the electrolyte membrane, there is no short-circuit issue. Hence, the n-n heterojunction is proposed to explain the electron blocking mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.