Abstract

The natural product jadomycin B, isolated from Streptomyces venezeulae ISP5230, has been found to cleave DNA in the presence of Cu(II) ions without the requirement for an external reducing agent. The efficiency of DNA cleavage was probed using supercoiled plasmid DNA in buffered solution as a model environment. EC 50 and t 1/2 values for cleavage were 1.7 μM and 0.75 h, respectively, and varied ±5% with the particular batch of plasmid and jadomycin employed. While UV–vis spectroscopy indicates that the cleavage event does not involve direct binding of jadomycin B to DNA, a stoichiometric Cu(II) preference for optimum cleavage suggests a weak binding interaction between jadomycin B and Cu(II) in the presence of DNA. The Cu(II)-mediated cleavage is greatly enhanced by UV light, which implicates the jadomycin B radical cation and Cu(I) as potential intermediates in DNA cleavage. Evidence in favor of this hypothesis was derived from a mechanistic assay which showed reduced cleavage as a function of added catalase and EDTA, scavengers of H 2O 2 and Cu(II), respectively. Thus, jadomycin B may serve as a source of electrons for Cu(II) reduction, producing Cu(I) which reacts with H 2O 2 to form hydroxyl radicals that cause DNA strand scission. In addition, scavengers of hydroxyl radicals and superoxide also display inhibitory effects, underscoring the ability of jadomycin B to produce a powerful arsenal of deleterious oxygen species when copper is present.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.