Abstract

Electrochemical conversion of carbon dioxide into fuel and chemicals with added value represents an appealing approach to reduce the greenhouse effect and realize a carbon-neutral cycle, which has great potential in mitigating global warming and effectively storing renewable energy. The electrochemical CO2 reduction reaction (CO2RR) usually involves multiproton coupling and multielectron transfer in aqueous electrolytes to form multicarbon products (C2+ products), but it competes with the hydrogen evolution reaction (HER), which results in intrinsically sluggish kinetics and a complex reaction mechanism and places higher requirements on the design of catalysts. In this review, the advantages of electrochemical CO2 reduction are briefly introduced, and then, different categories of Cu-based catalysts, including monometallic Cu catalysts, bimetallic catalysts, metal-organic frameworks (MOFs) along with MOF-derived catalysts and other catalysts, are summarized in terms of their synthesis method and conversion of CO2 to C2+ products in aqueous solution. The catalytic mechanisms of these catalysts are subsequently discussed for rational design of more efficient catalysts. In response to the mechanisms, several material strategies to enhance the catalytic behaviors are proposed, including surface facet engineering, interface engineering, utilization of strong metal-support interactions and surface modification. Based on the above strategies, challenges and prospects are proposed for the future development of CO2RR catalysts for industrial applications.Graphical

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call