Abstract

Anew sensor based on copper-zinc bimetal embedded and nitrogen-doped carbon-based composites (CuZn@NC) was prepared for triclosan (TCS) detection by pyrolyzing the precursor of Cu-Zn binuclear metal-organic framework (MOF). The performance for detecting TCS was evaluated using linear scanning voltammetry (LSV) and differential pulse voltammetry (DPV), and the proton and electron numbers during TCS oxidation have been proved to be one-to-one. The results indicated that CuZn@NC can present a satisfactory analysis performance for TCS detection. Under the optimized conditions, the linear response range was 0.2-600 µM and the detection limit was 47.9nM. The sensor presented good stability (signal current dropped only 2.5% after 21days) and good anti-interference of inorganic salts and small molecular organic acids. The good recovery (97.5-104.1%) for detecting spiked TCS in commercial products (toothpaste and hand sanitizer) suggested its potential for routine determinationof TCS in real samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call