Abstract

Triclosan (TCS) is a topical antiseptic widely used in different cosmetic products. It is also a common additive in many antimicrobial household consumables. Over a certain concentration, it becomes risky for human and environmental health. This work describes the development of an electrochemical sensor based on molecularly imprinted polymer (MIP), assembled on screen-printed gold electrode (Au-SPE), dedicated to the TCS detection in environmental water sources. To achieve this goal, an acrylamide/bisacrylamide solution was polymerized after linking TCS with the carboxylic polyvinyl chloride (PVC-COOH) layer onto the Au-SPE. The sensor device fabrication and its retention capabilities were characterized through cyclic voltammetry (CV), differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectroscopy. As control experiment, negligible responses were obtained during the non-imprinted polymer (NIP) test. The sensor could effectively detect TCS avoiding interferences of structural similar substances like 2,4,6-trichlorophenol and catechol. Under optimal conditions, the sensor responses were found logarithmic in the concentration range from 0.1 to 1000 pg mL−1. Indeed, compared with reported works, this sensor exhibits lower detection limit (LOD) and quantification limit (LOQ) of 0.23 and 0.78 pg mL−1, respectively. The developed sensor was effectively applied to wastewater samples for TCS detection and displayed satisfactory performances. Moreover, the different wastewater samples, regarding their TCS contents, were correctly classified by using principal component analysis (PCA) technique. Correspondingly, this work has demonstrated a cheap, simple and effective sensing platform for TCS detection thus making it a promising tool for future evolution of accurate and reliable environmental analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.