Abstract

Modern, efficient, and cost-effective approach to remediation of heavy metal-contaminated soil is based on the application of microorganisms. In this paper, four isolates from agricultural and urban contaminated soil showed abundant growth in the presence of copper(II) sulfate pentahydrate (CuSO4·5H2O) up to 2mM. Selected yeasts were identified by molecular methods as Candida tropicalis (three isolates) and Schwanniomyces occidentalis (one isolate). C. tropicalis (4TD1101S) showed the highest percentage of bioaccumulation capabilities (94.37%), determined by the inductively coupled plasma optical emission spectrometry (ICP-OES). The Raman spectra of C. tropicalis (4TD1101S) analyzed in a medium with the addition of 2mM CuSO4·5H2O showed certain increase in metallothionein production, which represents a specific response of the yeast species to the stress conditions. These results indicate that soil yeasts represent a potential for practical application in the bioremediation of contaminated environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.