Abstract

Addressing the environmental contamination from heavy metals and organic pollutants remains a critical challenge. This study explored the resilience and removal potential of Pleurotus ostreatus GEMB-PO1 for copper. P. ostreatus GEMB-PO1 showed significant tolerance, withstanding copper concentrations up to 2 mM. Its copper removal efficiency ranged from 64.56 % at 0.5 mM to 22.90 % at 8 mM. Transcriptomic insights into its response to copper revealed a marked upregulation in xenobiotic degradation-related enzymes, such as laccase and type II peroxidases. Building on these findings, a co-remediation system using P. ostreatus GEMB-PO1 was developed to remove both copper and organic pollutants. While this approach significantly enhanced the degradation efficiency of organic contaminants, it concurrently exhibited a diminished efficacy in copper removal within the composite system. This study underscores the potential of P. ostreatus GEMB-PO1 in environmental remediation. Nevertheless, further investigation is required to optimize the simultaneous removal of organic pollutants and copper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.