Abstract

The main objective of this research work is to develop a low-cost sensor to detect l-tryptophan (L-tryp) in real sample medium based on a modified glassy carbon electrode. For this, copper oxide nanoflowers (CuONFs) and poly-l-glutamic acid (PGA) were used to modify GCE. The prepared NFs and PGA coated electrode was characterized using field emission scanning electron microscope (FE-SEM) with energy dispersive X-ray (EDX) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. Furthermore, the electrochemical activity was performed by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The modified electrode showed excellent electro-catalytic activity towards L-tryp detection in PBS solution at neutral pH 7.0. Based on the physiological pH condition, the proposed electrochemical sensor can detect L-tryp concentration with a linear range of 1.0 × 10−4-8.0 × 10−8 molL−1 with having a detection limit of 5.0 × 10−8 molL−1 and sensitivity of 0.6μA/μMcm2. The selectivity of L-tryp was tested with a mixture of salt and uric acid solution at the above conditions. Finally, this strategy demonstrated excellent recovery value in real sample analysis like milk and urine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call