Abstract

We show that the activity and selectivity of Cu catalyst can be promoted by a Zr-based metal-organic framework (MOF), Zr6O4(OH)4(BDC)6 (BDC = 1,4-benzenedicarboxylate), UiO-66, to have a strong interaction with Zr oxide [Zr6O4(OH)4(-CO2)12] secondary building units (SBUs) of the MOF for CO2 hydrogenation to methanol. These interesting features are achieved by a catalyst composed of 18 nm single Cu nanocrystal (NC) encapsulated within single crystal UiO-66 (Cu⊂UiO-66). The performance of this catalyst construct exceeds the benchmark Cu/ZnO/Al2O3 catalyst and gives a steady 8-fold enhanced yield and 100% selectivity for methanol. The X-ray photoelectron spectroscopy data obtained on the surface of the catalyst show that Zr 3d binding energy is shifted toward lower oxidation state in the presence of Cu NC, suggesting that there is a strong interaction between Cu NC and Zr oxide SBUs of the MOF to make a highly active Cu catalyst.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.