Abstract

A neighboring boronate group in the substrate provides a dramatic rate acceleration in transmetalation to copper and thereby enables organoboronic esters to participate in unprecedented site-selective cross-couplings. This cross-coupling operates under practical experimental conditions and allows for coupling between vicinal bis(boronic esters) and allyl, alkynyl, and propargyl electrophiles as well as a simple proton. Because the reactive substrates are vicinal bis(boronic esters), the cross-coupling described herein provides an expedient new method for the construction of boron-containing reaction products from alkenes. Mechanistic experiments suggest that chelated cyclic ate complexes may play a role in the transmetalation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.