Abstract

The objective of this study was to determine whether Cu-amendment of field plots affects the frequency of Cu resistance, and antibiotic resistance patterns in indigenous soil bacteria. Soil bacteria were isolated from untreated and Cu-amended field plots. Cu-amendment significantly increased the frequency of Cu-resistant isolates. A panel of isolates were characterized by Gram-reaction, amplified ribosomal DNA restriction analysis and resistance profiling against seven antibiotics. More than 95% of the Cu-resistant isolates were Gram-negative. Cu-resistant Gram-negative isolates had significantly higher incidence of resistance to ampicillin, sulphanilamide and multiple (> or =3) antibiotics than Cu-sensitive Gram-negative isolates. Furthermore, Cu-resistant Gram-negative isolates from Cu-contaminated plots had significantly higher incidence of resistance to chloramphenicol and multiple (> or =2) antibiotics than corresponding isolates from control plots. The results of this field experiment show that introduction of Cu to agricultural soil selects for Cu resistance, but also indirectly selects for antibiotic resistance in the Cu-resistant bacteria. Hence, the widespread accumulation of Cu in agricultural soils worldwide could have a significant effect on the environmental selection of antibiotic resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.