Abstract

The Antibiotic Resistance Monitoring in Ocular Microorganisms (ARMOR) study is a nationwide longitudinal antibiotic resistance surveillance program specific to bacterial pathogens commonly encountered in ocular infections. We evaluated in vitro resistance rates and trends among isolates obtained from pediatric patients (≤17 years of age). Clinical centers across the United States were invited to submit ocular isolates of Staphylococcus aureus, coagulase-negative staphylococci (CoNS), Streptococcus pneumoniae, Haemophilus influenzae and Pseudomonas aeruginosa to a central laboratory. Minimum inhibitory concentrations for various antibiotic classes were determined by broth microdilution per Clinical and Laboratory Standards Institute guidelines and interpreted as susceptible, intermediate or resistant based on available breakpoints. Longitudinal trends were analyzed using a Cochran-Armitage test for linear trends in a proportion. Of 4829 isolates collected from January 2009 to December 2016, 995 isolates, sourced primarily from hospitals and referral centers, were obtained from pediatric patients (n = 286 H. influenzae, n = 284 S. aureus, n = 213 CoNS, n = 150 S. pneumoniae and n = 62 P. aeruginosa). With few exceptions, P. aeruginosa and H. influenzae were generally susceptible to the antibiotics tested. Of S. aureus and CoNS isolates, respectively, 56% and 72% were resistant to azithromycin and 24% and 47% were methicillin-resistant (MR); concurrent resistance to other drug classes and multidrug resistance (≥3 drug classes) were prevalent among MR staphylococci. Of S. pneumoniae isolates, 38% and 35% demonstrated resistance to azithromycin and penicillin, respectively. Besifloxacin had the lowest minimum inhibitory concentration against the Gram-positive isolates. These in vitro data suggest antibiotic resistance is common among staphylococcal and pneumococcal isolates collected from pediatric patients with ocular infections. Methicillin resistance was prevalent among staphylococci with many strains demonstrating multidrug resistance. These findings may not be representative of resistance trends in community-based practices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call