Abstract

The disadvantage of poor thermal performance of epoxy resin limits its application in special fields, therefore we improve the thermal performance of epoxy resin by copolymerizing it with phthalonitrile resin. A novel self-promoted curing phthalonitrile monomer containing pyridine rings and amino groups (APNH) was successfully synthesized using 2-amino-4-hydroxypyridine and 4-nitrophthalonitril, and characterized by FTIR and NMR spectra. DSC confirmed that the APNH monomer exhibits curing behavior that is self-promoting. Copolymerizing the APNH monomer with epoxy resin enhances the thermal performance of the epoxy resin. The curing behavior of the EPNH copolymer was studied using DSC, which revealed two distinct curing peaks. FTIR analysis showed that the EPNH copolymer has formed structures such as triazine, phthalocyanine, and isoindoline. The presence of cyano groups significantly enhances the thermal properties of the copolymer, surpassing those of traditional epoxy resins. This enhancement in thermal performance amplifies with an increase in the content of the APNH monomer. The research indicates that the EPNH copolymer exhibits superior thermal stability and elevated glass transition temperatures, facilitating the application of epoxy resin in specialized areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.