Abstract

AbstractTo enhance the catalytic copolymerization of CO2 and propylene oxide catalyzed by zinc glutarate, the influence of trace of water, ethanol, and propanal on the catalytic activity, the resulted copolymer structure, and the molecular weight and molecular weight distribution of the copolymer were investigated extensively. The experimental results showed that the catalytic activity decreased remarkably in the presence of either trace of ethanol or water, but increased in the presence of trace of propanal. Both 1H‐NMR and 13C‐NMR spectra suggested that the content of carbonate linkages of resulted copolymer was not effected obviously in the presence of above‐mentioned impurities, giving completely alternating poly(propylene carbonate) (PPC). GPC results indicated that these impurities reduced the molecular weights but broadened the molecular weight distributions of resulted copolymers. Finally, the byproduct contents including both propylene carbonate determined by GC and polyether increased with the increase of three impurity concentrations. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 2007

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.