Abstract

Copigmentation effect of flavonoids on black mulberry juice and its main anthocyanin, cyanidin-3-O-glucoside (C3G), was evaluated. Results showed that the hyperchromic effect of flavonols, such as kaempferol (KAE), hyperoside (HYP), rutin (RUT), quercetin (QTI) and isoquercitrin (IQT), was better than that of quercitrin (QTR) and catechin (CAT). The degradation rate constant (k) of C3G decreased by 8.6 %∼50.0 % when KAE, HYP, RUT, QTI and IQT were added, whilst half-life (t1/2), activation energy (Ea) and hydration reaction equilibrium constant (pKh) increased by 7.4 %∼99.0 %, 60.0 %∼95.7 % and 8.3 %∼37.8 % respectively. Meanwhile, the maximum absorption wavelength of the mixture displayed bathochromic shift. Molecular simulation indicated that the interaction energy with C3G was KAE > HYP > RUT > QTI > IQT > QTR > CAT. The main driving force forming C3G-flavonol complex were hydrogen bond and Van der Waals interaction. These results will provide theoretical reference to enhance color stability of food rich in anthocyanins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call