Abstract
Metal phthalocyanine (MPc) complexes hold great promise for photocatalysis applications because of their high visible light harvesting efficiency and semiconductive properties. However, the effective development requires the suppression of their rapid charge recombination. Transition metal ions can act as electron traps to enhance the charge separation of semiconductors, but challenges still remain for bimetallic co-catalysis of MPc due to the difficulties in the combination between them. Herein, we proposed a new approach to enable the assisted metal ions to interact with MPc through fibrous support, constructing a novel bimetallic photocatalyst via simultaneously immobilizing iron(II) phthalocyanine (FePc) and Cu(II) onto the surface of amidoximated polyacrylonitrile (PAN) fiber. Taking the photodegradation of organic dyes as model reactions, this bimetallic catalyst achieves much higher photoactivity than that of the monometallic FePc catalyst, and effectively converts surface H2O2 into hydroxyl radicals rather than superoxide radicals and high-valent metal-oxo species. The Cu(II) not only enables the transfer of photoexcited electrons from FePc, but also promotes the running of Fe(II)/Fe(III) cycle to boost reactive radicals generation through H2O2 activation. The strategy of coupling Cu(II) with MPc through fibrous support provides a facile and promising solution for the advancement of MPc-based photocatalysis via visible light energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.