Abstract

Enlargement and doming of the shoot apical meristem (SAM) is a hallmark of the transition from vegetative growth to flowering. While this change is widespread, its role in the flowering process is unknown. The late termination (ltm) tomato (Solanum lycopersicum) mutant shows severely delayed flowering and precocious doming of the vegetative SAM LTM encodes a kelch domain-containing protein, with no link to known meristem maintenance or flowering time pathways. LTM interacts with the TOPLESS corepressor and with several transcription factors that can provide specificity for its functions. A subgroup of flowering-associated genes is precociously upregulated in vegetative stages of ltm SAMs, among them, the antiflorigen gene SELF PRUNING (SP). A mutation in SP restored the structure of vegetative SAMs in ltm sp double mutants, and late flowering was partially suppressed, suggesting that LTM functions to suppress SP in the vegetative SAM In agreement, SP-overexpressing wild-type plants exhibited precocious doming of vegetative SAMs combined with late flowering, as found in ltm plants. Strong flowering signals can result in termination of the SAM, usually by its differentiation into a flower. We propose that activation of a floral antagonist that promotes SAM growth in concert with floral transition protects it from such terminating effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.