Abstract
Triticum monococcum has recently drawn the attention of biologists to discover and utilize novel genes and alleles. To explore the molecular features of the genetic network governing floral transition in shoot apical meristem (SAM) of spring growth habit T. monococcum, two expressed sequence tag (EST) libraries containing 3,031 ESTs from vegetative SAM (VS) and 2,647 ESTs from early reproductive SAM (RS) were analyzed. Assembly of ESTs resulted in 2,303 unigenes for VS library (368 contigs and 1,935 singletons) and 1,890 unigenes (337 contigs and 1,553 singletons) for RS library. The 67.05 % of VS unigenes and 66.30 % of RS unigenes showed significant similarity with genes of known, putative and or unknown function, whereas the remaining 32.95 % of the VS unigenes and 33.7 % of RS unigenes displayed no significant match with the public protein database. The 1,064 and 866 unigenes of VS and RS libraries were assigned to functional categories using Pageman ontology tool. Further analysis revealed that the switch from VS to RS caused significant changes in the abundance of unigenes assigned to some functional categories. A total of 37 genes were identified which were significantly differentially expressed between vegetative and reproductive stages of T. monococcum SAM. Investigation of the differentially expressed genes revealed the importance of the genes involved in energy metabolism, ubiquitin/26S proteasome system, polyamines biosynthesis and signaling of reactive oxygen species in SAM differentiation towards floral transition in T. monococcum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Genes & Genomics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.