Abstract

1. Rhythmic movements of the jaw, tongue, and hyoid that were induced by stimulation of the cortical masticatory area (CMA) were recorded cineradiographically in the anesthetized rabbit. Jaw movements were also recorded by a laser position detector. 2. The evoked jaw movements were classified into four types: small circular (type A), large circular (type B), large vertical (type C), and crescent-shaped (type D). Among these, types B and D resembled the jaw movements of the food transport cycle and those of the chewing cycle in a masticatory sequence. 3. Each type of jaw movement was associated with a particular pattern of tongue and hyoid movements. In general, the tongue protruded during jaw opening and retracted during jaw closure. The hyoid generally moved upward and forward during jaw opening but downward and backward during jaw closure. 4. Electromyograms (EMGs) were recorded from jaw muscles [masseter (Ma) and digastric (Di) muscles], extrinsic tongue muscles [styloglossus (Sg) and genioglossus (Gg) muscles], and hyoid muscles [sternohyoid (Sh) and geniohyoid (Gh) muscles] during cortically induced rhythmic jaw and tongue movements (CRJTMs). These muscles were classified into two groups: group 1 was activated mainly in the jaw opening phase, and group 2 was activated mainly in the jaw closing and power phases. The Di, Gg, and Gh were included in the former, and the Ma, Sg, and Sh were included in the latter. 5. The timings of EMG activation to a jaw movement cycle were relatively constant for the muscles of group 1, irrespective of the types of CRJTMs, whereas those for the muscles of group 2 altered considerably with the different types of CRJTMs. 6. Relationships of the integrated muscle activity between the Di and Gg and between the Di and Gh were significant, whereas those between the Ma and Sg and between the Ma and Sh were not. 7. When a small strip of polyurethane form of various degrees of hardness was inserted between the opposing molars during CRJTMs, EMG activity of the muscles of group 2 increased with the hardness of the strip. On the other hand, EMG activities of the muscles of group 1 were less affected by the same intraoral stimuli. 8. Two conclusions were reached: first, physiological properties of the CRJTMs and cortically induced rhythmic movements of the hyoid were essentially similar to those observed in natural mastication. This fictive mastication might thus be regarded as a suitable model for simulating natural mastication.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call