Abstract
AbstractPrecise control of the structure and spatial distance of Lewis acid (LA) and Lewis base (LB) sites in a porous system to construct efficient solid frustrated Lewis pair (FLP) catalyst is vital for industrial application but remains challenging. Herein, we constructed FLP sites in a polyoxometalate (POM)‐based metal–organic framework (MOF) by introducing coordination‐defect metal nodes (LA) and surface‐basic POM with abundant oxygen (LB). The well‐defined and unique spatial conformation of the defective POM‐based MOF ensure that the distance between LA and LB is at ~4.3 Å, a suitable distance to activate H2. This FLP catalyst can heterolytically dissociate H2 into active Hδ−, thus exhibiting high activity in hydrogenation, which is 55 and 2.7 times as high as that of defect‐free POM‐based MOF and defective MOF without POM, respectively. This work provides a new avenue toward precise design multi‐site catalyst to achieve specific activation of target substrate for synergistic catalysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.