Abstract

In recent years, the concept of Frustrated Lewis Pairs (FLPs), which consist of a combination of Lewis acid (LA) and Lewis base (LB) active sites arranged in a suitable geometric configuration, has been widely utilized in homogeneous catalytic reactions. This concept has also been extended to solid supports such as zeolites, metal oxide surfaces, and metal/covalent organic frameworks, resulting in a diverse range of heterogeneous FLP catalysts that have demonstrated notable efficiency and recyclability in activating small molecules. This study presents the successful immobilization of FLP active sites onto the surface of ligand-stabilized copper nanoclusters with atomic precision, leading to the development of copper nanocluster FLP catalysts characterized by high reactivity, stability, and selectivity. Specifically, thiol ligands containing 2-methoxyl groups were strategically designed to stabilize the surface of [Cu34S7(RS)18(PPh3)4]2+ (where RSH = 2-methoxybenzenethiol), facilitating the formation of FLPs between the surface copper atoms (LA) and ligand oxygen atoms (LB). Experimental and theoretical investigations have demonstrated that these FLPs on the cluster surface can efficiently activate H2 through a heterolytic pathway, resulting in superior catalytic performance in the hydrogenation of alkenes under mild conditions. Notably, the intricate yet precise surface coordination structures of the cluster, reminiscent of enzyme catalysts, enable the hydrogenation process to proceed with nearly 100% selectivity. This research offers valuable insights into the design of FLP catalysts with enhanced activity and selectivity by leveraging surface/interface coordination chemistry of ligand-stabilized atomically precise metal nanoclusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.