Abstract

PurposeThe purpose of this paper is to present a novel and accurate coordination control method of dual‐arm modular robot based on position feedback using 3D motion measurement system – Optotrak3020. The end‐position accuracy of dual‐arm modular robot can be improved obviously.Design/methodology/approachBy means of Optotrak3020, the actual end‐position of dual‐arm modular robot is acquired and then returned to the robotic controllers, so the corresponding position error compensation is implemented. Through a 3D simulation and experiment of dual‐arm modular robot for tracking a trajectory of plane right triangle, the feasibility and validity of this control strategy are verified.FindingsThe coordination control of dual‐arm modular robot based on position feedback can be accomplished by means of Optotrak3020. The dual‐arm modular robot can accurately accomplish the task of positioning or tracking a reference trajectory.Practical implicationsThis real‐time position feedback control method with high control accuracy can be implemented on a PowerCube dual‐arm modular robot system. This method also can be applied to other dual‐arm robot systems, such as mobile robot with dual‐arm, humanoid robot.Originality/valueThe coordination control method of dual‐arm modular robot is presented based on end‐position feedback using Optotrak3020 motion measurement system. The platforms of simulation, communication and experiment are developed, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.