Abstract

There has been growing concern about energy consumption and environmental impact of datacenters. Some pioneers begin to power datacenters with renewable energy to offset carbon footprint. However, it is challenging to integrate intermittent renewable energy into datacenter power system. Grid-tied system is widely deployed in renewable energy powered datacenters. But the drawbacks (e.g. Harmonic disturbance and costliness) of grid tie inverter harass this design. Besides, the mixture of green load and brown load makes powermanagement heavily depend on software measurement and monitoring, which often suffers inaccuracy. We propose DualPower, a novel power provisioning architecture that enables green datacenters to integrate renewable power supply without grid tie inverters. To optimize DualPower operation, we propose a specially designed power management framework to coordinate workload balancing with power supply switching. We evaluate three optimization schemes (LM, PS and JO) under different datacenter operation scenarios on our trace-driven simulation platform. The experimental results show that DualPower can be as efficient as grid-tied system and has good scalability. In contrast to previous works, DualPower integrates renewable power at lower cost and maintains full availability of datacenter servers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call