Abstract

The share of renewable energy sources (RESs) in the overall power production is on the upward trend in many power systems. Especially in recent years, considerable amounts of RES type distributed generations (DGs) are being integrated in distribution systems, albeit several challenges mainly induced by the intermittent nature of power productions using such resources. Optimal planning and efficient management of such resources is therefore highly necessary to alleviate their negative impacts, which increase with the penetration level. This paper deals with the optimal allocation (i.e. size and placement) of RES type DGs in coordination with reconfiguration of distribution systems (RDS). Moreover, the paper presents quantitative analysis with regards to the impacts of RDS on the integration level of such DGs in distribution systems. To this end, a tailor-made genetic algorithm (GA) based optimization model is developed. The proposed model is tested on a 16-node network system. Numerical results show the positive contributions of network reconfiguration on increasing the level of renewable DG penetration, and improving the overall performance of the system in terms of reduced costs and losses as well as a more stabilized voltage profile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.