Abstract
The difference in response to electric and hydraulic braking causes sudden changes in braking torque during braking mode switching. An electro-hydraulic composite braking system’s dynamic torque coordination control strategy is proposed under braking mode switching conditions. By establishing the dynamic response model of the electro-hydraulic braking system (EHB), the key factors affecting the response speed of the EHB are analyzed, and the dynamic fuzzy controller for the pressure regulation of the brake wheel cylinder is designed. At the same time, the nonlinearity and hysteresis in the hydraulic braking process are considered, as well as electrical brake response overshoots. The electric brake response model is established, and the PID controller with feedforward feedback is designed to control the motor to adjust the inertia overpressure or lag pressure deficiency in the hydraulic braking process. Finally, the simulation verification is carried out; the results show that the proposed strategy can increase the hydraulic brake response speed by 25.4%, the impact degree of the vehicle is not more than 6.25 GB, and the hydraulic steady state error does not exceed 2.3%, which improves the vehicle ride comfort under braking mode switching.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.