Abstract

In this study, reinforcement learning (RL)-based centralized path planning is performed for an unmanned combat aerial vehicle (UCAV) fleet in a human-made hostile environment. The proposed method provides a novel approach in which closing speed and approximate time-to-go terms are used in the reward function to obtain cooperative motion while ensuring no-fly-zones (NFZs) and time-of-arrival constraints. Proximal policy optimization (PPO) algorithm is used in the training phase of the RL agent. System performance is evaluated in two different cases. In case 1, the warfare environment contains only the target area, and simultaneous arrival is desired to obtain the saturated attack effect. In case 2, the warfare environment contains NFZs in addition to the target area and the standard saturated attack and collision avoidance requirements. Particle swarm optimization (PSO)-based cooperative path planning algorithm is implemented as the baseline method, and it is compared with the proposed algorithm in terms of execution time and developed performance metrics. Monte Carlo simulation studies are performed to evaluate the system performance. According to the simulation results, the proposed system is able to generate feasible flight paths in real-time while considering the physical and operational constraints such as acceleration limits, NFZ restrictions, simultaneous arrival, and collision avoidance requirements. In that respect, the approach provides a novel and computationally efficient method for solving the large-scale cooperative path planning for UCAV fleets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.