Abstract

Stability, vehicle safety, energy saving, and passenger comfort are the major objectives of vehicle platooning control. These objectives are coupled, interrelated, and even conflicting, so integrated optimization of multiple objectives is quite challenging. Particularly for heterogeneous platoons, the difficulties are intensified for the differences in vehicle dynamics. In this paper, the concept of symmetry is utilized in the platooning control, that is, the design method of each vehicle’s controller is the same. For each controller, it is to solve the optimal solution of multi-objective collaborative optimization. The concept of asymmetry is meanwhile embodied in the parameter setting of each controller, for the vehicle heterogeneity. The contents of this study are as follows. First, a mathematical model is established, in which the differences in vehicle dynamic characteristics of heterogeneous platoon, road slope, and aerodynamics are all taken into account. Then, based on distributed nonlinear model predictive control (DNMPC) method, multi-objective control strategies are proposed for the leader and followers, cooperatively. Furthermore, a weight coefficient optimization method is presented, to further improve the platoon’s multi-objective synthesis performance. Finally, comparative experiments are carried out. Results demonstrate that, compared with the classic cruise control method of vehicle platoons, the proposed approach can reduce energy consumption by more than 5% and improve tracking performance on the premise of passenger comfort. Real-road experiments verify that the proposed control system can function effectively and satisfy the computational requirements in real applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call