Abstract

The axion anti-quark nugget (AQ¯N) model was developed to explain in a natural way the asymmetry between matter and antimatter in Universe. In this hypothesis, a similitude between the dark and the visible components exists. The lack of observability of any type of dark matter up to now, in particular AQ¯Ns, requires finding new ways of detecting these particles, if they exist. In spite of strong interaction with visible matter, for such objects a very small ratio of cross section to mass is expected and thus huge detector systems are necessary. This paper presents a new idea for the direct detection of the AQ¯Ns using minerals as natural rock deposits acting as paleo-detectors, where the latent signals of luminescence produced by interactions of AQ¯Ns are registered and can be identified as an increased and symmetrical deposited dose. The estimates were made for minerals widely distributed on Earth, for which the thermoluminescence (TL) signal is intense and if the thermal conditions are constant and with low temperatures, the lifetime of the latent signals is kept for geological time scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.