Abstract

In this paper, a distributed scheme is proposed for the cooperative motion generation in a distributed network of multiple redundant manipulators. The proposed scheme can simultaneously achieve the specified primary task to reach global cooperation under limited communications among manipulators and optimality in terms of a specified optimization index of redundant robot manipulators. The proposed distributed scheme is reformulated as a quadratic program (QP). To inherently suppress noises originating from communication interferences or computational errors, a noise-tolerant zeroing neural network (NTZNN) is constructed to solve the QP problem online. Then, theoretical analyses show that, without noise, the proposed distributed scheme is able to execute a given task with exponentially convergent position errors. Moreover, in the presence of noise, the proposed distributed scheme with the aid of NTZNN model has a satisfactory performance. Furthermore, simulations and comparisons based on PUMA560 redundant robot manipulators substantiate the effectiveness and accuracy of the proposed distributed scheme with the aid of NTZNN model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.