Abstract

Cardiac-restricted transcription factors dHAND and myocyte enhancer factor 2C are expressed in the developing heart and activate several cardiac promoters. However, their regulatory mechanisms are still to be understood. To elucidate their exact regulatory functions, we have developed an RNA interference strategy to specifically inhibit dHAND and myocyte enhancer factor 2C protein production in H9c2 cells, which are derived from rat embryonic heart. Expression of endogenous cardiac genes atrial natriuretic peptide and alpha-myosin heavy chain was down-regulated in H9c2 cells lacking both dHAND and myocyte enhancer factor 2C, indicating that these factors are required for the maintenance of the cardiac genetic program. Consistent with these, expression of atrial natriuretic peptide and alpha-myosin heavy chain was up-regulated in H9c2 cells, which overexpressed dHAND and myocyte enhancer factor 2C. In addition, dHAND and myocyte enhancer factor 2C interact to synergistically activate atrial natriuretic peptide and alpha-myosin heavy chain transcription. Furthermore, chromatin immunoprecipitation analysis in H9c2 cells treated with phenylephrine showed that dHAND and myocyte enhancer factor 2C protein complex bind to the A/T sequence on atrial natriuretic peptide promoter. Taken together, these results not only suggest that the complex cis-trans interaction of dHAND, myocyte enhancer factor 2C, and the target gene may fine-tune gene expression in cardiac myocytes but also provide a molecular paradigm to elucidate the mechanisms of action of dHAND and myocyte enhancer factor 2C in the developing heart.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.