Abstract
Device-to-device (D2D) communication in cellular networks is one of the emerging technologies for 5G communications. Initiating D2D communication device discovery is a vital research problem due to energy consumption, the need for fast discovery in dense areas and discovery in poor coverage areas. Many approaches are suggested for device discovery like Bio-inspired and Firefly proximity base discovery. Ellipsoid device discovery model is proposed for multi users and orthogonal frequency division multiple access (OFDMA) network, in which radio resources are divided into time slots and frequency divisions. In large device density areas, devices establish a local area network that can be a centralised or a distributed local area network. In this proposed model, devices which are located in poor coverage area can be discovered easily. An iterative algorithm with linear pre-processing is applied to find the position of devices that gives the ellipsoid solution of the device position. The probability of false alarm and probability of misdetection verify the proposed solution. Results show an enhancement in the system capacity, rate of detection and maximum distance discovery in comparison with the firefly proximity algorithm.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have