Abstract
Cooperative control of vehicle trajectories and traffic signal phases is a promising approach to improving the efficiency and safety of transportation systems. This type of traffic flow control refers to the coordination and optimization of vehicle trajectories and traffic signal phases to reduce congestion, travel time, and fuel consumption. In this paper, we propose a cooperative control method that combines a model predictive control algorithm for adaptive traffic signal control and a trajectory construction algorithm. For traffic signal phase selection, the proposed modification of the adaptive traffic signal control algorithm combines the travel time obtained using either the vehicle trajectory or a deep neural network model and stop delays. The vehicle trajectory construction algorithm takes into account the predicted traffic signal phase to achieve cooperative control. To evaluate the method performance, numerical experiments have been conducted for three real-world scenarios in the SUMO simulation package. The experimental results show that the proposed cooperative control method can reduce the average fuel consumption by 1% to 4.2%, the average travel time by 1% to 5.3%, and the average stop delays to 27% for different simulation scenarios compared to the baseline methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.