Abstract

AbstractDespite the progress on cobalt and manganese catalyzed C−C and C−N bond‐forming methodologies, the associated catalyst reusability remains with some unresolved issue, which needs to be addressed. Disclosed herein, a flexible multidentate proton‐responsive ligand (L) bearing 2,6‐bis(1H‐benzo[d]imidazol‐2‐yl)pyridine (BBP), 6‐(1H‐benzo[d]imidazol‐2‐yl)picolinic acid (BPA), and benzene‐1,2‐diamine (BDA) for Co/Mn‐based mono‐ and bi‐metallic supramolecular materials for C‐/N‐alkylation of alcohols. The flexible binding sites and different hydrogen bond donor‐acceptor fragments of L brings the rigidity and self‐assembling to ordered crystalline supramolecular materials, which prevented the coordinatively saturated active sites and thus providing much higher reaction efficiency and selectivity, which is highly unlikely in the case of comparable individual components. The easy synthesis, efficient reactivity and selectivity through cooperativity, broad substrate scope, and efficient recycling via recharging of metals make the catalyst and the protocol economical and sustainable. Importantly, the design strategy based on metallo‐organic hydrogen bonded coordination assembly has the potential to contribute to the development of supramolecular materials for various advanced catalytic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call