Abstract

Ca(2+) microdomains or locally restricted Ca(2+) increases in the cell have recently been reported to regulate many essential physiological events. Ca(2+) increases through the inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R)/Ca(2+) release channels contribute to the formation of a class of such Ca(2+) microdomains, which were often observed and referred to as Ca(2+) puffs in their isolated states. In this report, we visualized IP(3)-evoked Ca(2+) microdomains in histamine-stimulated intact HeLa cells using a total internal reflection fluorescence microscope, and quantitatively characterized the spatial profile by fitting recorded images to a two-dimensional Gaussian distribution. Ca(2+) concentration profiles were marginally spatially anisotropic, with the size increasing linearly even after the amplitude began to decline. We found the event centroid drifted with an apparent diffusion coefficient of 4.20 ± 0.50 μm(2)/s, which is significantly larger than those estimated for IP(3)Rs. The sites of maximal Ca(2+) increase, rather than initiation or termination sites, were detected repeatedly at the same location. These results indicate that Ca(2+) microdomains in intact HeLa cell are generated from spatially distributed multiple IP(3)R clusters or Ca(2+) puff sites, rather than a single IP(3)R cluster reported in cells loaded with Ca(2+) buffers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.