Abstract
We study an evolutionary prisoner's dilemma game with two layered graphs, where the lower layer is the physical infrastructure on which the interactions are taking place and the upper layer represents the connections for the strategy adoption (learning) mechanism. This system is investigated by means of Monte Carlo simulations and an extended pair-approximation method. We consider the average density of cooperators in the stationary state for a fixed interaction graph, while varying the number of edges in the learning graph. According to the Monte Carlo simulations, the cooperation is modified substantially in a way resembling a coherence-resonance-like behavior when the number of learning edges is increased. This behavior is reproduced by the analytical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.