Abstract

When performing complex tasks, coexistence of organisms in a shared environment can be achieved by means of different strategies. For example, individuals can evolve to complete all parts of the complex task, choosing self-sufficiency over cooperation. On the other hand, they may choose to split parts of the task and share the products for mutual benefit, such that distinct groups of the organisms specialize on a subset of elementary tasks. In contrast to the existing theory of specialization and task sharing for cells in multicellular organisms (or colonies of social insects), here we describe a mechanism of evolutionary branching which is based on cooperation and division of labor, and where selection happens at the individual level. Using a class of mathematical models and the methodology of adaptive dynamics, we investigate the conditions for such branching into distinct cooperating subgroups to occur. We show that, as long as performing multiple tasks is associated with additional cost, branching occurs for a wide parameter range, and this scenario is stable against the invasion of cheaters. We hypothesize that over time, this can lead to evolutionary speciation. Examples from bacterial evolution and the connection with the Black Queen Hypothesis are discussed. It is our hope that the theory of diversification rooted in cooperation may inspire further ecological research to identify more evolutionary examples consistent with this speciation mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call