Abstract

Improved refrigeration techniques have lead to scientific discoveries such as superconductivity and Bose-Einstein condensation. Improved refrigeration techniques also enhance our quality of life. Semiconductor processing equipment and magnetic-resonance imaging machines incorporate mechanical coolers operating below 10 K. There is a pressing need for refrigeration techniques to reach even lower temperatures because many next-generation analytical and astronomical instruments will rely on sensors cooled to temperatures near 100 mK. Here we demonstrate a solid-state, on-chip refrigerator capable of reaching 100 mK based on the quantum-mechanical tunneling of electrons through normal metal-insulator-superconductor junctions. The cooling power and temperature reduction of our refrigerator are sufficient for practical applications and we have used it to cool bulk material that has no electrical connection to the refrigerating elements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.