Abstract

Air cooling has its own advantages in packaging technology and such many applications. The analysis of multi-jet impingement cooling process is performed. Air is used as fluid in present system. A simulated component with heater plate is cooled with four jets. All jets are placed inline or considered in a row. The jets are inclined to base and reference target to be cooled. The inclination of each jet is changed according to various configurations from 60 and 120 Degree to make packaging as compact as possible. Different configurations are examined and best combination is selected for study of variation of target to jet distance. Interface of flow from one jet with other is creating turbulence and effect of this on cooling target plate is studied experimentally. The graphs are plotted giving variations of Nusselt number as per Reynolds number in laminar range up to 2000. Jet inclination combination with first jet -inside, second jet - outside, third jet - outside, and fourth jet – inside is considered as giving best results with inclinations as 60-120-60-120 degree respectively. The laminar flow, with jet position inline, in which jet fluid flow lines gets mixed and creating turbulence gives higher average Nusselt number indicating better cooling performance. Further experiments using various fluids and various jet combinations / inclinations may be performed. The correlation is presented showing variation between Nusselt number and Reynolds number for typical case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.