Abstract
We propose a technique for polarizing and cooling finite many-body classical systems using feedback control. The technique requires the system to have one collective degree of freedom conserved by the internal dynamics. The fluctuations of other degrees of freedom are then converted into the growth of the conserved one. The proposal is validated using numerical simulations of classical spin systems in a setting representative of nuclear magnetic resonance experiments. In particular, we were able to achieve 90% polarization for a lattice of 1000 classical spins starting from an unpolarized infinite temperature state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.