Abstract
The aim of this study was to investigate the mechanisms responsible for resistance to antimicrobials in a collection of enterobacterial isolates recovered from two hospitals in Saudi Arabia. A total of six strains isolated from different patients showing high resistance to carbapenems was recovered in 2015 from two different hospitals, with four being Klebsiella pneumoniae and two Enterobacter cloacae. All isolates except one K. pneumoniae were resistant to tigecycline, but only one K. pneumoniae was resistant to colistin. All produced a carbapenemase according to the Carba NP test, and all were positive for the EDTA-disk synergy test for detection of MBL. Using PCR followed by sequencing, the four K. pneumoniae isolates produced the carbapenemase NDM-1, while the two E. cloacae isolates produced the carbapenemase VIM-1. Genotyping analysis by Multilocus Sequence Typing (MLST) showed that three out of the four K. pneumoniae isolates were clonally related. They had been recovered from the same hospital and belonged to Sequence Type (ST) ST152. In contrast, the fourth K. pneumoniae isolate belonged to ST572. Noticeably, the NDM-1-producing K. pneumoniae additionally produced an extended-spectrum ß-lactamase (ESBL) of the CTX-M type, together with OXA-1 and TEM-1. Surprisingly, the three clonally related isolates produced different CTX-M variants, namely, CTX-M-3, CTX-M-57, and CTX-M-82, and coproduced QnrB, which confers quinolone resistance, and the 16S rRNA methylase RmtC, which confers high resistance to all aminoglycosides. The AAC(6′)-Ib acetyltransferase was detected in both K. pneumoniae and E. cloacae. Mating-out assays using Escherichia coli as recipient were successful for all isolates. The blaNDM-1 gene was always identified on a 70-kb plasmid, whereas the blaVIM-1 gene was located on either a 60-kb or a 150-kb plasmid the two E. cloacae isolates, respectively. To the best of our knowledge, this is the first report of the coexistence of an MBL (NDM-1), an ESBL (CTX-M), a 16S rRNA methylase (RmtC), an acetyltransferase (AAC[6′]-Ib), and a quinolone resistance enzyme (QnrB) in K. pneumoniae isolates recovered from different patients during an outbreak in a Saudi Arabian hospital.
Highlights
Metallo-β-lactamases (MBLs) are enzymes that hydrolyze most β-lactams including carbapenems, the most potent β-lactams
To the best of our knowledge, this is the first report of the coexistence of an MBL (NDM-1), an ESBL (CTX-M), a 16S rRNA methylase (RmtC), an acetyltransferase (AAC[6]-Ib), and a quinolone resistance enzyme (QnrB) in K. pneumoniae isolates recovered from different patients during an outbreak in a Saudi Arabian hospital
They all remained susceptible to tigecycline (MIC ≤ 2 mg/L) according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) 2016 breakpoint, the cut-off tigecycline in EUCAST 2019 guidelines is 0.5 mg/L
Summary
Metallo-β-lactamases (MBLs) are enzymes that hydrolyze most β-lactams including carbapenems, the most potent β-lactams. Resistance mediated by MBLs is considered the most serious mechanism for inactivating β-lactams [1]. Of the clinically relevant MBLs, NDM, VIM, and IMP are the most common worldwide [2, 3]. Klebsiella pneumoniae and Enterobacter cloacae are Enterobacteriaceae that are leading causes of nosocomial infections and can Isolate Hospital/City KP-Q1 A/ Al-Gouf KP-Q2 KP-Q3 KP-Q4 B/ Riyadh EN.C.Q5 EN.C.Q6. KP: Klebsiella pneumoniae EN.C: Enterobacter cloacae ND: Not determined
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have