Abstract

In existing convolutional neural networks (CNNs), both convolution and pooling are locally performed for image regions separately, no contextual dependencies between different image regions have been taken into consideration. Such dependencies represent useful spatial structure information in images. Whereas recurrent neural networks (RNNs) are designed for learning contextual dependencies among sequential data by using the recurrent (feedback) connections. In this work, we propose the convolutional recurrent neural network (C-RNN), which learns the spatial dependencies between image regions to enhance the discriminative power of image representation. The C-RNN is trained in an end-to-end manner from raw pixel images. CNN layers are firstly processed to generate middle level features. RNN layer is then learned to encode spatial dependencies. The C-RNN can learn better image representation, especially for images with obvious spatial contextual dependencies. Our method achieves competitive performance on ILSVRC 2012, SUN 397, and MIT indoor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call