Abstract
Brain-computer interface (BCI) enables us to interact with the external world via electroencephalography (EEG) signals. Recently, deep learning methods have been applied to the BCI to reduce the time required for recording training data. However, more evidence is required due to lack of comparison. To reveal more evidence, this study proposed a deep learning method named time-wise convolutional neural network (TWCNN), which was applied to a BCI dataset. In the evaluation, EEG data from a subject was classified utilizing previously recorded EEG data from other subjects. As a result, TWCNN showed the highest accuracy, which was significantly higher than the typically used classifier. The results suggest that the deep learning method may be useful to reduce the recording time of training data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.