Abstract

Fusion of spectral and spatial information has been proved to be an effective approach to improve model performance in near-infrared hyperspectral data analysis. Regardless, most of the existing spectral-spatial classification methods require fairly complex pipelines and exact selection of parameters, which mainly depend on the investigator's experience and the object under test. Convolutional neural network (CNN) is a powerful tool for representing complicated data and usually works with few “hand-engineering”, making it an appropriate candidate for developing a general and automatic approach. In this paper, a two-branch convolutional neural network (2B–CNN) was developed for spectral-spatial classification and effective wavelengths (EWs) selection. The proposed network was evaluated by three classification data sets, including herbal medicine, coffee bean and strawberry. The results showed that the 2B–CNN obtained the best classification accuracies (96.72% in average) when compared with support vector machine (92.60% in average), one dimensional CNN (92.58% in average), and grey level co-occurrence matrix based support vector machine (93.83% in average). Furthermore, the learned weights of the two-dimensional branch in 2B–CNN were adopted as the indicator of EWs and compared with the successive projections algorithm. The 2B–CNN models built with wavelengths selected by the weight indicator achieved the best accuracies (96.02% in average) among all the examined EWs models. Different from the conventional EWs selection method, the proposed algorithm works without any additional retraining and has the ability to comprehensively consider the discriminative power in spectral domain and spatial domain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call