Abstract

Near-infrared reflectography (NIR) is a well-established non-invasive and non-contact imaging technique. The NIR methods are able to reveal concealed layers of artwork, such as a painter’s sketch or repainted canvas. The information obtained may be helpful to historians for studying artist technique, attributing an artwork reconstructing faded details. Our research presents the improved method previously developed that reveals the hidden features by removing the information content of the visible spectrum from NIR. Based on convolutional neural networks (CNN), our model estimates the transfer function from visible spectra to NIR, which is nonlinear and specific for painting materials. Its parameters are learnt for particular paintings on the subsamples randomly selected across the canvas, and the model is further utilised to enhance the whole artwork. In addition to the previously developed model, our algorithm exploits each pixel’s surroundings to estimate its NIR response. This leads to more precise results and increased robustness to various noises. We demonstrate higher accuracy than the previous method on the historical paintings mock-ups and higher performance on well-known artworks such as Madonna dei Fusi attributed to Leonardo da Vinci.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.