Abstract

BackgroundImaging is vital for assessing rectal cancer, with endoanal ultrasound (EAUS) being highly accurate in large tertiary medical centers. However, EAUS accuracy drops outside such settings, possibly due to varied examiner experience and fewer examinations. This underscores the need for an AI-based system to enhance accuracy in non-specialized centers. This study aimed to develop and validate deep learning (DL) models to differentiate rectal cancer in standard EAUS images.MethodsA transfer learning approach with fine-tuned DL architectures was employed, utilizing a dataset of 294 images. The performance of DL models was assessed through a tenfold cross-validation.ResultsThe DL diagnostics model exhibited a sensitivity and accuracy of 0.78 each. In the identification phase, the automatic diagnostic platform achieved an area under the curve performance of 0.85 for diagnosing rectal cancer.ConclusionsThis research demonstrates the potential of DL models in enhancing rectal cancer detection during EAUS, especially in settings with lower examiner experience. The achieved sensitivity and accuracy suggest the viability of incorporating AI support for improved diagnostic outcomes in non-specialized medical centers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.