Abstract

The surgical management of patients with failed total hip or knee arthroplasty (THA and TKA) necessitates the identification of the implant manufacturer and model. Failure to accurately identify implant design leads to delays in care, increased morbidity, and healthcare costs. The automated identification of implant designs has the potential to assist in the surgical management of patients with failed arthroplasty. This study aimed to develop and validate a convolutional neural network deep learning model for the identification of primary and revision hip and knee total joint arthroplasty designs from plain radiographs. This study trained a convolutional neural network deep learning model to automatically identify 24 THA designs and 14 TKA designs from 11,204 anterior-posterior radiographs obtained from 8,763 patients. From these radiographs, 8,963 radiographs (80%) were used for model training and 2,241 radiographs (20%) were used for model validation. Model performance was assessed through receiver operating curve characteristics. After 1,000 training epochs by the convolutional neural network deep learning model, the computational model discriminated 17 primary THA designs with an area under the receiver operating curve (AUC) of 0.98, sensitivity of 95.8%, and specificity of 98.6%. The deep learning model discriminated eight primary TKA designs with an AUC of 0.97, sensitivity of 94.9%, and specificity of 97.8%. The deep learning model demonstrated an AUC of 0.98 and 0.96 for the identification of seven revision THA and six revision TKA designs, respectively. This study developed and validated a convolutional neural network deep learning model for the identification of hip and knee total joint arthroplasty designs from plain radiographs. The study findings demonstrate excellent accuracy of the deep learning model for the identification of 24 THA and 14 TKA designs, illustrating the great potential of the deep learning model to assist in preoperative surgical planning of failed arthroplasty patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call